STEREOCONTROLLED SYNTHESIS OF 4- AND 9-ETHYL-2-AZABICYCLO[3.3.1]NONAN-7-ONES VIA 2-CYANOPIPERIDINES¹

Josep Bonjoch^{*}, Núria Casamitjana, Jordi Gràcia, and Joan Bosch^{*}

Laboratory of Organic Chemistry, Faculty of Pharmacy, University of Barcelona, 08028-Barcelona, Spain

A stereoselective synthesis of 4- and 9-ethyl substituted morphans from 4-acetonyl-3-ethylpiperidines, involving the acidic cyclization of the corresponding 2-cyanopiperidines, is reported.

The intramolecular reactions of 2,3,4,5-tetrahydropyridinium intermediates have proven to be particularly useful for the synthesis of 2-azabicyclo-[3.3.1]nonanes (morphans) when a suitable side chain containing a properly located nucleophilic carbon is attached at C-4 of the piperidine ring. In this context the required iminium salts have generally been obtained by mercuric acetate oxidation of amines² or by protonation of enamines,³ although in the last few years we have most efficiently employed⁴ 2-cyanopiperidines for this purpose.^{5,6}

Our interest in functionalized morphans lies in the fact that this bicyclic unit is present in the *Strychnos* indole alkaloids.⁷ However, these alkaloids bear a two-carbon appendage (usually ethyl, cis with respect to the substituent at C-4 of the piperidine ring) either at the 4- (Strychnan type) or at the 9-position (Aspidospermatan type).

In order to obtain both 4- and 9-ethyl substituted morphans that would allow further access to the above-mentioned alkaloids,⁸ we planned to study the preparation and the cyclization of the 2-cyanopiperidines derived from the cis-3,4-disubstituted piperidine **la**, a compound for which we had previously developed a stereoselective synthesis.⁹

C43-Piperidine **la** was converted in a 79% overall yield¹⁰ into a mixture (5:3 ratio) of the cyanopiperidines 2 and $3^{11,12}$ by a one-pot, three step reaction sequence consisting of *N*-oxide formation, modified Polonovski reaction,¹³ and trapping of the two possible regioisomeric iminium salts **A** and **B** with potassium cyanide¹⁴ (Scheme 1). Not very surprisingly, cyanopiperidine 3 showed a trans-relationship between the substituents at the 3- and 4-positions, thus indicating that an epimerization at carbon 3 had occurred.¹⁵ This epimerization can be rationalized by considering that, at the pH 4-5 required in the cyanation process, the iminium salt **B** is in equilibrium with the corresponding enamine and that the more stable trans 3,4-diequatorial disposition is reached.

Scheme 1. Reagents: (i) m-CPBA, CH₂Cl₂, 0°C, 1 h; (ii) TFAA, -15°C, 1 h; (iii) aq KCN, NaOAC, pH 4-5,²30²min; (iv) 12N aq HCl-MeOH (1:9), 40 h, rfx.

As could be expected, treatment of cyanopiperidine 2 with hydrogen chloride in refluxing methanol afforded the Strychnan-type morphan 6 in 69% yield. A similar cyclization from cyanopiperidine 3, having a wrong transrelationship between the substituents at the 3 and 4 positions, gave bicyclo 7 in 68% yield. This compound possesses the correct Aspidospermatan-type

		Table	I.	¹³ C-NMR	Dat <u>a</u>	of 2-0	yanop	iperio	lines 2-	-5 ^a		
Compound	C-2	C-3	C-4	C-5	C-6	СН	2-CO-CH	3	CN	CH2	CH3	CH ₂ Ar ^b
2	52.6	29.9	31.9	38.5	50.9	46.5	207.6	30.2	116.7	17.4	12.1	60.2
3	56.2	44.0	33.8	31.3	48.7	47.0	207.8	30.5	115.0	22.4	11.0	60.4
4	53.8	42.8	31.7	26.9	49.8	47.2	207.5	30.2	116.5	17.3	11.6	60.1
5	51.5	34.1	32.9	41.3	54.1	46.8	207.4	30.3	116.2	23.4	10.8	60.4

^aChemical shifts in ppm relative to TMS. Measured in $CDC1_3$ solution at 50.3 MHz.^b Phenyl ring carbons were found (average values) at 137.0 (<u>ipso-C</u>), 128.8 (<u>o-C</u>), 128.5 (<u>m-C</u>), and 127.6 (p-C) ppm.

Scheme 2. Stereochemical Control in the Cyclization Step

relative stereochemistry at the bridge carbon, thus pointing out that a further epimerization has taken place during the cyclization step.

This unexpected, but desirable epimerization can be rationalized as shown in Scheme 2; cyclization of the trans-iminium salt C should necessarily occur through a conformation in which both piperidine substituents adopt an axial disposition. This cyclization would lead to bicyclo 8, in which the bridge carbon 9 has a relative configuration opposite to that of natural products. However, this cyclization not only probably requires a high activation energy but also is reversible because the resulting product is a ßamino ketone that can undergo a retro-Mannich reaction. This fact was experimentally proved as a pure sample of 8, which had been obtained as a minor by-product in the cyclization, was almost completely converted into its more stable epimer 7 under acidic conditions. The iminium salt C epimerizes, through the corresponding enamine, to B, which cyclizes to the isolated bicyclic amino ketone 7.

Operating as in the cis series, cyanation of *trans*-piperidine **lb** (Scheme 1) gave a mixture of the above 3,4-*trans* 2-cyanopiperidine **3** and its regioisomer **5** (3:5 ratio, 71% overall yield), whose cyclization afforded (61% yield) a separable mixture of morphans **7** and **9**.¹⁶

Compound	1–C	3-C	4-C	5–C	6-C	7–C	8C	9-C	CH ₂ -CH3	CH ₂ Ar ^b
6	53.9	51.2	40.9	32.2	41.9	211.5	40.5	34.2	23.9 11.3	59.1
7	58.0	44.3	32.7	31.8	42.4	211.7	35.9	42.6	23.9 11.7	59.4
8	55.9	44.6	26.4	32.2	48.4	211.8	40.4	43.1	23.3 12.2	59.5
9	54.6	47.3	41.9	33.1	48.5	211.6	40.1	28.7	25.4 12.4	59.5

Table II. ¹³ C-NMR Data of 2-Azabicyclo[3.3.1]nonan-7-ones	6-9	d
---	-----	---

^aChemical shifts in ppm relative to TMS. Measured in CDCl₃solution at 50.3 MHz. ^DPhenyl ring carbons were found (average values) at 139.2 (<u>ipso</u>-C), 128.5 (<u>o</u>-C), 128.2 (<u>m</u>-C), and 126.9 (<u>p</u>-C) ppm.

ACKNOWLEDGMENT. Support for this research was provided by the DGICYT (Spain) through Grant PB 87-0062 and by the CIRIT (Catalonia) through Grant AR-88-100. Thanks are also due to the CIRIT for a fellowship given to one of us (J.G.).

REFERENCES AND NOTES

- 1. Functionalized 2-azabicyclo 3.3.1 nonanes. Part XII. For part XI in this series, see: Amat, M.; Sanfeliu, E.; Bonjoch, J.; Bosch, J. *Tetrahedron Lett.* **1989**, 30, 0000.
- (a) Bonjoch, J.; Casamitjana, N.; Bosch, J. Tetrahedron 1982, 38, 2883. (b) Bonjoch, J.; Casamitjana, N.; Quirante, J.; Rodríguez, M.; Bosch, J. J. Org. Chem. 1987, 52, 267.
 (c) Bonjoch, J.; Casamitjana, N.; Quirante, J.; Torrens, A.; Paniello, A.; Bosch, J. Tetrahedron 1987, 43, 377.
- (a) Evans, D. A.; Mitch, C. H.; Thomas, R. C.; Zimmerman, D.; Robey, R. L. J. Am. Chem. Soc. 1980, 102, 5955. (b) Burke Jr., T. R.; Jacobson, A. E.; Rice, K. C.; Weissman, B. A.; Huang, H.-C.; Silverton, J. V. J. Med. Chem. 1986, 29, 748.
- 4. (a) Bonjoch, J.; Casamitjana, N.; Bosch, J. *Tetrahedron* **1988**, 44, 1735. (b) Bonjoch, J.; Quirante, J.; Rodríguez, M.; Bosch, J. *Tetrahedron* **1988**, 44, 2087.
- For other syntheses of functionalized 2-azabicyclo 3.3.1 nonanes also starting from piperidine derivatives, see: (a) by Dieckmann cyclization: Bosch, J.; Bonjoch, J. J. Ong. Chem. 1981, 46, 1538. (b) by reductive rearrangement of enol lactones: Bosch, J.; Bonjoch, J.; Serret, I. *Tetrahedron Lett.* 1982, 23, 1297. (c) by α,α'-annelation of 2,5-piperidinediones: Bonjoch, J.; Quirante, J.; Serret, I.; Bosch, J. *Tetrahedron Lett.* 1989, 30, 1861. (d) see also reference 1.
- For other syntheses of bridged azabicyclic compounds by cyclization of 2-cyanopiperidines, see: (a) Gnecco Medina, D. H.; Grierson, D. S.; Husson, H.-P. Tetrahedron Lett. 1983, 24, 2099. (b) Lounasmaa, M.; Jokela, R.; Tamminen, T. Tetrahedron Lett. 1985, 26, 801.
- 7. Bosch, J.; Bonjoch, J. "Studies in Natural Products Chemistry", vol. 1. Atta-ur-Rahman. ed., Elsevier, Amsterdam, **1988**, pp 31-88.
- 8. For previous work in the deethyl series, see reference 2b.
- 9. Bonjoch, J.; Linares, A.; Guardià, M.; Bosch, J. Heterocycles 1987, 26, 2165.
- 10. This yield is significantly higher than those observed in similar reactions from tetrahydropyridines as in the latter series competing disproportionation processes of the dihydropyridinium intermediates occur: Grierson, D. S.; Vuilhorgne, M.; Husson, H.-P.; Lemoine, G. J. Ong. Chem. 1982, 47, 4439.
- 11. There are no precedents for the formation of 2-cyanopiperidines starting from 1,3,4trisubstituted piperidines. For the regiochemistry of this reaction on 1,3-disubstituted piperidines, see: (a) Jokela, R.; Tamminen, T.; Lounasmaa, M. Heterocycles 1985, 23, 1707. (b) Jokela, R.; Karvinen, E.; Tolvanen, A.; Lounasmaa, M. Tetnahedron 1985, 44, 2367.
- For other procedures leading to 1,3,4-trisubstituted 2-cyanopiperidines, see: (a) by controlled reduction of 2-piperidones followed by cyanation : Glass, R. D.; Rapoport, H. J. Ong. Chem. 1979, 44, 1324. (b) by nucleophilic addition of a soft carbanion to a 2-cyano-1,2,5,6-tetrahydropyridine followed by reintroduction of cyanide ion: Grierson, D. S.; Harris, M.; Husson, H.-P. Tetrahedion 1983, 39, 3683 and references therein; Koskinen, A.; Lounasmaa, M. J. Chem. Soc. Chem. Commun. 1983, 821; Chapman, R. F.; Philips, N. I. J.; Ward, R. S. Tetrahedion 1985, 41, 5229.
- 13. Lounasmaa, M.; Koskinen, A. Heterocycles 1984, 22, 1591.
- 14. (a) Groutas, W. C.; Essawi, M.; Portoghese, P. S. Synth. Commun. 1980, 10, 495. (b) Grierson, D. S.; Harris, M.; Husson, H.-P. J. Am. Chem. Soc. 1980, 102, 1064. (c) Lounasmaa, M.; Karvinen, E.; Koskinen, A.; Jokela, R. Tetnahednon 1987, 43, 2135.
- 15. The epimeric cyanopiperdine 4, with retention of the relative configuration at C-3, was formed in a yield lower than 5%.
- 16. (a) The structure assigned to each new compounds is in accord with its infrared, 200-MHz ¹H-, and 50-MHz ¹3C-NMR spectra. (b) In addition, an analytical sample of the new compounds (2, 3, 6-9) gave satisfactory C, H, and N combustion analyses.

(Received in UK 4 August 1989)